Voltage/Current Phase Angle

"ELI the ICE man"

Phil Sherrod - W4PHS

When an AC current flows through a **resistor**, the voltage and current are in phase. However, when you introduce inductance or capacitance, a phase shift occurs and the phase angle depends on the amount of inductive and capacative reactance.

When AC current flows through a pure **inductor**, the voltage leads the current (current lags the voltage) by 90°. (**ELI**)

When AC current flows through a pure **capacitor**, the current leads the voltage (voltage lags the current) by 90°. (**ICE**)

Impedance is the AC equivalent of resistance in DC circuits. Like resistance, high impedance blocks current flow. Impedance consists of **Resistance** and **Reactance**.

Inductive reactance (X_L) is +j (Positive value on j vertical axis)

Capacitive reactance (X_C) is -j (Negative value on j vertical axis)

Resistance is positive value on horizontal axis.

Total impedance is $Z = R \pm jX$ Where R is the resistance and X is the total reactance.

Impedances in series can be added together algebraically. In the case where \mathbf{X}_L (which is positive) matches \mathbf{X}_C (which is negative) then the total reactance is zero, and the circuit is **resonant**.

An impedance in the form $R \pm jX$ can be converted to **polar coordinates**, $r \angle \theta$ where 'r' is the magnitude and θ is the phase angle.

Power Factor

True Power is the actual power dissipated and **Apparent Power** is the power calculated by independently measuring voltage and current. True Power is measured in Watts. Apparent power is measured in Volt-Amps (VA).

In a circuit with a pure resistance, True Power = E * I (Voltage times current)

In an AC circuit with reactance, True Power = Power Factor * E * I

$$Power Factor = \frac{True \ Power}{Apparent \ Power} = \cos \theta$$

True Power = *Power Factor* * *Apparent Power* = $\cos \theta$ * *Apparent Power*

Where θ is the phase angle.

For resistance, $\theta = 0$ and $\cos \theta = 1$, so Power Factor = 1

For pure capacitance or inductance, $\theta=\pm90$ and $\cos\theta=0$, so Power Factor = 0 In other words, inductors and capacitors don't dissipate power – they store it. So power is dissipated only by current flowing through resistors.

Good news: Residential power meters measure true power (watts).

Bad news: Apparent power wastes power in the electric power grid.